Vibrational spectroscopy of photosystem I.
نویسنده
چکیده
Fourier transform infrared difference spectroscopy (FTIR DS) has been widely used to study the structural details of electron transfer cofactors (and their binding sites) in many types of photosynthetic protein complexes. This review focuses in particular on work that has been done to investigate the A₁cofactor in photosystem I photosynthetic reaction centers. A review of this subject area last appeared in 2006 [1], so only work undertaken since then will be covered here. Following light excitation of intact photosystem I particles the P700⁺A⁻(1) secondary radical pair state is formed within 100ps. This state decays within 300ns at room temperature, or 300μs at 77K. Given the short-lived nature of this state, it is not easily studied using "static" photo-accumulation FTIR difference techniques at either temperature. Time-resolved techniques are required. This article focuses on the use of time-resolved step-scan FTIR DS for the study of the P700⁺A⁻(1) state in intact photosystem I. Up until now, only our group has undertaken studies in this area. So, in this article, recent work undertaken in our lab is described, where we have used low-temperature (77K), microsecond time-resolved step-scan FTIR DS to study the P700⁺A⁻(1) state in photosystem I. In photosystem I a phylloquinone molecule occupies the A₁binding site. However, different quinones can be incorporated into the A1 binding site, and here work is described for photosystem I particles with plastoquinone-9, 2-phytyl naphthoquinone and 2-methyl naphthoquinone incorporated into the A₁binding site. Studies in which ¹⁸O isotope labeled phylloquinone has been incorporated into the A1 binding site are also discussed. To fully characterize PSI particles with different quinones incorporated into the A1 binding site nanosecond to millisecond visible absorption spectroscopy has been shown to be of considerable value, especially so when undertaken using identical samples under identical conditions to that used in time-resolved step-scan FTIR measurements. In this article the latest work that has been undertaken using both visible and infrared time resolved spectroscopies on the same sample will be described. Finally, vibrational spectroscopic data that has been obtained for phylloquinone in the A1 binding site in photosystem I is compared to corresponding data for ubiquinone in the QA binding site in purple bacterial reaction centers. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
منابع مشابه
Variation of Exciton-Vibrational Coupling in Photosystem II Core Complexes from Thermosynechococcus elongatus As Revealed by Single-Molecule Spectroscopy
The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effe...
متن کاملHow exciton-vibrational coherences control charge separation in the photosystem II reaction center.
In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-v...
متن کاملExciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center.
The dynamics of charge separation in the photosystem II reaction center (PSII-RC) in the presence of intramolecular vibrations with their frequency matching the energy gap between the exciton state acting as the primary electron donor and the first charge-transfer (CT) state are investigated. A reduced PSII-RC 4-state model explicitly including a CT state is analyzed within Redfield relaxation ...
متن کاملLight-induced dynamics in photosystem I electron transfer.
Protein dynamics are likely to play important, regulatory roles in many aspects of photosynthetic electron transfer, but a detailed description of these coupled protein conformational changes has been unavailable. In oxygenic photosynthesis, photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c and the reduction of ferredoxin. A chlorophyll (chl) a/a' heterodimer, P...
متن کاملVibrational Properties of Quinones in Photosynthetic Reaction Centers
Fourier transform infrared difference spectroscopy (FTIR DS) is widely used to study the structural details of electron transfer cofactors in photosynthetic protein complexes. In photosynthetic proteins quinones play an important role, functioning as a cofactor in light-driven electron transfer. In photosystem I (PS I) phylloquinone (PhQ) functions as an intermediary in electron transfer. To in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1847 1 شماره
صفحات -
تاریخ انتشار 2015